25,120 research outputs found

    Random Matrices and Chaos in Nuclear Physics: Nuclear Reactions

    Full text link
    The application of random-matrix theory (RMT) to compound-nucleus (CN) reactions is reviewed. An introduction into the basic concepts of nuclear scattering theory is followed by a survey of phenomenological approaches to CN scattering. The implementation of a random-matrix approach into scattering theory leads to a statistical theory of CN reactions. Since RMT applies generically to chaotic quantum systems, that theory is, at the same time, a generic theory of quantum chaotic scattering. It uses a minimum of input parameters (average S-matrix and mean level spacing of the CN). Predictions of the theory are derived with the help of field-theoretical methods adapted from condensed-matter physics and compared with those of phenomenological approaches. Thorough tests of the theory are reviewed, as are applications in nuclear physics, with special attention given to violation of symmetries (isospin, parity) and time-reversal invariance.Comment: 50 pages, 26 figure

    Cross-Section Fluctuations in Chaotic Scattering

    Full text link
    For the theoretical prediction of cross-section fluctuations in chaotic scattering, the cross-section autocorrelation function is needed. That function is not known analytically. Using experimental data and numerical simulations, we show that an analytical approximation to the cross-section autocorrelation function can be obtained with the help of expressions first derived by Davis and Boose. Given the values of the average S-matrix elements and the mean level density of the scattering system, one can then reliably predict cross-section fluctuations

    Prevalence of marginally unstable periodic orbits in chaotic billiards

    Full text link
    The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both {\it exist} and {\it strongly influence} the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.Comment: 6 pages, 5 figure

    Induced Time-Reversal Symmetry Breaking Observed in Microwave Billiards

    Full text link
    Using reciprocity, we investigate the breaking of time-reversal (T) symmetry due to a ferrite embedded in a flat microwave billiard. Transmission spectra of isolated single resonances are not sensitive to T-violation whereas those of pairs of nearly degenerate resonances do depend on the direction of time. For their theoretical description a scattering matrix model from nuclear physics is used. The T-violating matrix elements of the effective Hamiltonian for the microwave billiard with the embedded ferrite are determined experimentally as functions of the magnetization of the ferrite.Comment: 4 pages, 4 figure

    Mechanical Mixing in Nonlinear Nanomechanical Resonators

    Full text link
    Nanomechanical resonators, machined out of Silicon-on-Insulator wafers, are operated in the nonlinear regime to investigate higher-order mechanical mixing at radio frequencies, relevant to signal processing and nonlinear dynamics on nanometer scales. Driven by two neighboring frequencies the resonators generate rich power spectra exhibiting a multitude of satellite peaks. This nonlinear response is studied and compared to nthn^{th}-order perturbation theory and nonperturbative numerical calculations.Comment: 5 pages, 7 figure

    First Experimental Observation of Superscars in a Pseudointegrable Barrier Billiard

    Full text link
    With a perturbation body technique intensity distributions of the electric field strength in a flat microwave billiard with a barrier inside up to mode numbers as large as about 700 were measured. A method for the reconstruction of the amplitudes and phases of the electric field strength from those intensity distributions has been developed. Recently predicted superscars have been identified experimentally and - using the well known analogy between the electric field strength and the quantum mechanical wave function in a two-dimensional microwave billiard - their properties determined.Comment: 4 pages, 5 .eps figure
    • …
    corecore